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Figure 1. Generating 3D Scene with Ambient Dynamics. Given an input image or text prompt, our proposed method, VividDream,

generates a large, explorable 4D scene with ambient scene motion.

Abstract

We introduce VividDream, a method for generating ex-
plorable 4D scenes with ambient dynamics from a single in-
put image or text prompt. VividDream first expands an input
image into a static 3D point cloud through iterative inpaint-
ing and geometry merging. An ensemble of animated videos
is then generated using video diffusion models with quality
refinement techniques and conditioned on renderings of the
static 3D scene from the sampled camera trajectories. We
then optimize a canonical 4D scene representation using
an animated video ensemble, with per-video motion embed-
dings and visibility masks to mitigate inconsistencies. The
resulting 4D scene enables free-view exploration of a 3D

scene with plausible ambient scene dynamics. Experiments
demonstrate that VividDream can provide human viewers
with compelling 4D experiences generated based on diverse
real images and text prompts.

1. Introduction

Recent advancements in text-to-image generation [9, 40,
46] have revolutionized the field of computer vision, pro-
ducing highly realistic and contextually accurate images
from textual descriptions. This progress has paved the way
for extending generative models beyond static images to
higher-dimensional outputs, including video generation, 3D
object generation, and 3D scene generation.
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Figure 2. Failure in a baseline solution. Training a 4D scene

representation (e.g., 4DGS [54]) using a single video generated
by SVD [3] poses several challenges. First, the weak or absent
camera motion in the animated video leads to many unseen areas
and limited novel view synthesis. Second, existing video depth
and pose estimation algorithms [22, 61] have difficulty in handling
scenes with ambient motion due to their reliance on accurate corre-
spondence estimation ( e.g., optical flow [50]). These limitations
motivate our multi-video approach to 4D scene generation.

However, in the realm of 4D space, current research pre-
dominantly focuses on generating or reconstructing individ-
ual 4D objects [2, 25, 45, 58, 60, 62]. While these efforts
have led to significant breakthroughs in capturing objects’
dynamics over time, there remains a notable gap in the gen-
eration of comprehensive 4D scenes. A 4D scene encom-
passes not just the temporal evolution of the scene but also
the spatial scale of the 3D environment, enabling immersive
view exploration. Although the recent DreamScene4D [7]
generates a 4D scene from an input video, it focuses on re-
constructing and generating the dynamic foreground objects
but not expanding the 3D scene from the input views for
larger view exploration.

In this paper, we aim to generate 4D scenes, enabling
users to explore the 3D scene with dynamic ambient mo-
tion, such as fluid motions, trees, and grass swaying in the
wind. To achieve this, a straightforward baseline might
involve using a powerful video generator to create a se-
quence and then performing 3D reconstruction [22, 61] on
this video to form a 4D scene [23, 28, 30, 54]. However,
this approach falls short in several ways. No matter how
detailed, a single video is insufficient to capture the full
complexity and navigability required for an explorable 4D
scene (Fig. 2). Such a scene necessitates multiple perspec-
tives and the ability to transition between different views
and moments seamlessly.

To address these limitations, we propose a novel pipeline
for generating explorable 4D scenes from a single image
or text prompt. In Stage 1, we expand the initial 3D point
cloud obtained from the input through an iterative view ex-
trapolation and inpainting process. Stage 2 focuses on gen-
erating ambient scene motion by animating multiple view-
extrapolation videos rendered from the 3D scene. Finally,
in Stage 3, we train a 4D scene representation using the
animated multi-view videos while handling inconsistencies
through visibility masking and per-video motion embed-

dings.

Our key contributions include:

* A holistic approach to generating explorable 4D scenes
with ambient dynamics from a single image or text
prompt.

* A multi-video animation framework to generate scene
motion while respecting specified camera trajectories.

» Techniques to mitigate inconsistencies when generating a
4D scene from multiple independently animated videos.
We demonstrate the effectiveness of our approach in

a variety of scenes. Experimental results showcase our

method’s ability to generate compelling 4D scene experi-

ences with plausible ambient dynamics. We will release
source code to facilitate future research on this problem.

2. Related Work

Text-to-3D generation Generative models have achieved
promising results in generating realistic 3D objects [6, 29,
38, 42, 49, 53] and 3D scenes.By leveraging the power
of 2D diffusion models to generate high-quality 2D im-
ages, certain approaches [13, 19, 57] address text-to-3D
scene generation as an inpainting problem. These methods
take text prompts as input and utilize 2D diffusion mod-
els [1, 31, 46] to generate images and inpaint the parts not
seen in previous images. Another trend seeks higher con-
trollability over the generated content by pre-defining the
allocation of objects within the scene [8, 59, 63]. How-
ever, these methods generate static 3D scenes, lacking dy-
namic ambient scene motion, essential for better immer-
sion. VividDream aims to generate dynamic scenes with
ambient dynamics to provide a more immersive and engag-
ing experience.

Video diffusion models Recent advancements in video
diffusion models have demonstrated significant progress in
generating high-quality video content [3, 4, 15, 33, 55].
Text-guided video diffusion models [4, 15, 18, 48, 51] ex-
tend the capabilities of the powerful text-to-image genera-
tors [46, 47] to the domain of video generation. To enhance
the context guidance, some methods condition the video
generation with images [3, 5, 16, 55]. However, the text
and/or image conditions can still be insufficient to fully con-
trol the generated motions and separate camera motion from
scene motion. To improve the controllability of motions,
MotionCtrl [52] and CameraCtrl [17] fine-tune pre-trained
video diffusion models [3, 16] with additional conditioning
modules to take the user-specified camera or scene motion
guidance. On the other hand, Time-Reversal [12] leverages
Stable Video Diffusion (SVD) [3] in a zero-shot manner to
guide video generation with an end-view condition and can
achieve view interpolation and video looping. We build on
the camera controllability introduced by Time-Reversal and



focus on generating ambient scene motion with conditioned
camera poses.

Single-image animation. Cinemagraph generation [10,
20, 34] animates a single image into a video with looping
motions. Text2-Cinemagraph [35] enables text-guided ani-
mation of the generated images. Li et al. [27] predicts the
ambient scene motion and provides the interactivity on the
generated dynamics. Li et al. [26] lifts the 2D cinemagraph
into 3D space to allow small 3D viewpoint changes. Nev-
ertheless, these methods are still limited in the input image
view without expanding the scene. In contrast, we expand
a 4D scene from an input image to allow exploration with
significant viewpoint change.

3. Preliminary
3.1. SVD for image-to-video generation

SVD [3] is a publicly available state-of-the-art video gen-
erator that builds upon Stable Diffusion [46], producing 14
or 25 frames at a resolution of 1024x 768. It takes in an
image and generates a video sequence by a latent-based dif-
fusion model, where a 3D-UNet, ®, denoises a video latent
zr, ~ N(0,I) into a clean zg over T} steps. At each de-
noising step ¢4, the 3D-UNet ® denoises the video latent z;,
by z,—1 = (2, © z™8, t,, ™8, c54aT) where @ de-
notes the concatenating operation, z'™¢ is the input image
condition encoded by VAE. Additionally, ¢'™& and cs¢2!a*
are CLIP [43]-encoded image condition and motion condi-
tioning scalars for the 3D-UNet attention modules. After
the iterative denoising steps, the clean video latent z is de-
coded into an RGB video by the VAE decoder. Although
SVD can generate videos of promising quality, it lacks con-
trollability over both scene and camera motion, restricting
its use for scenarios such as view interpolation.

3.2. Time-Reversal for video view interpolation

To control the camera motion generation, Time-
Reversal [12] leverages a crucial property of SVD:
the input conditioning image serves as the start frame of
the generated video. Therefore, at each denoising step
tq4, besides a denoising pass on the video latent z;, to get
deonised z{"4, with start-view image condition Z°*t,
Time-Reversal temporally reverses z;, as z;, and denoises
with another end-view image condition, Zend o obtain
the denoised Z‘Z;‘ﬂl. Subsequently, the two denoised z5''}
—end

and z;)%, are fused into z;, . for the next denoising step

ta— 1t zg,1 = vz + (1 — ) (Z5", ), where 7 is the

fusing weight and (Z{"¢,) is the reverse of Z;"¢,, back to

the original video time space.
By manipulating additional end-view image condition,
7¢"d, Time-Reversal can perform video looping when the

end view Z°d is identical to the start view Z5t%'t  and
view interpolation between two different views of Z¢"4 and
Zstart | Nevertheless, a single view-interpolation video gen-
eration is insufficient for expanding an explorable 4D scene,
especially SVD-generated video with 25 frames. There-
fore, we incorporate multiple passes of Time-Reversal to
acquire the scene motions in each part of a generated 3D
scene (Sec 4.2).

3.3. 4D Gaussian Splatting for 4D-scene view syn-
thesis

3D Gaussian Splatting (3DGS) [21] recently has shown
decent rendering quality and fast training and render-
ing speeds with an explicit representation, compared to
NeRF [39] with neural implicit representation. The geom-
etry of each Gaussian splat (GS) is represented by position
1 € R3 and an anisotropic covariance matrix Y, where the
covariance is decomposed by ¥ = RSSTRT with the ro-
tation R € R* and scaling S = Diag(s),s € R3. On
the other hand, the appearance of a GS is parameterized by
the color, ¢, encoded by spherical harmonics coefficients,
and an opacity, o. To render the color C of a given pixel
at a view is rendered by depth-based sorting on the GS set
{G;}X.| and a-blending with 2D-projected opacity:

i—1

N
C=> ca; [JQ-ay). (1)
i=1 j=1

To extend the 3DGS for dynamic scenes, 4DGS [54]
(4DGS) introduces a deformation module to deform each
GS for dynamic motion. Given the 3D position y =
(z,y, z) and the query time ¢, the deformation module ob-
tains the feature f using a spatiotemporal Hexplane en-
coder [14], f. Then, the feature H(x,y, z,t) is fed into
decoding MLPs © to acquire the deformation position
(Az, Ay, Az), rotation Ar, and scaling As for the time
t. With all GS {G;}Y, deformed, the view of a dynamic
scene is rendered by Eq. 1.

However, 4DGS is sensitive to noisy training views due
to the reliance on accurate camera poses and wide cover-
age of viewing directions. In our setting, which is based on
multiple videos generated by SVD and Time-Reversal, the
appearance and motion inconsistencies among videos can
be harmful. To address this issue, we introduce per-video
motion embedding and visibility mask to mitigate the blur-
riness caused by multi-video inconsistencies (Sec. 4.3).

4. Method

Our three-stage pipeline for generating an explorable 4D
scene with ambient motion is illustrated in Fig.3. In the fol-
lowing subsections, we provide detailed information about
the three stages.
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Figure 3. Method overview. Our method takes either a single image or a text prompt as input. For an image input, we generate a caption

using [24] and estimate its depth using DepthAnything [56]. For a text prompt input, we generate the corresponding image using a text-to-
image generator [46]. The image, text prompt, and estimated depth form the initialization for the subsequent stages. In Stage 1 (Sec. 4.1),
we expand the initial 3D point cloud through an iterative process of novel view inpainting and point cloud merging using aligned depth
estimates. Stage 2 (Sec. 4.2) focuses on generating the scene motions by rendering K static view-extrapolation videos covering the entire
3D scene. Each video is first animated using Time-Reversal [12] with static renderings as conditions. To improve the video quality, we
refine the animated videos using SVD [3]. However, this refinement may cause the camera motion to deviate from the desired trajectory.
We mitigate this issue by applying a smooth transition on the last few frames using FILM [44] to match the conditioning end view. Finally,
in Stage 3 (Sec. 4.3), we train the 4D scene model, 4DGS [54], using the animated videos from Stage 2. To handle appearance and motion
inconsistencies among the multi-view videos, we apply visibility masks with soft blending weights and introduce a per-video motion
embedding inspired by NeRF-W [36]. The resulting 4D scene model enables consistent motion and immersive 4D scene exploration.

4.1. 3D scene generation

Given a single-view point cloud Py unprojected by the in-
put image and the estimated depth, we expand the 3D point
cloud through an iterative process of view extrapolations,
consisting of novel-view inpainting and point-cloud merg-
ing. At each iteration ¢, we select a novel-view pose, 7;,
to render the image Z; and depth D; from the point cloud
P;—1, with a mask M; indicating the known regions. The
unseen regions in the rendered image are then filled by the
inpainting model [46] conditioned on image Z;, inpainting
mask (1 — M;), and text p. We observe that the VAE en-

coding and decoding process produces color inconsistencies
between the inpainted image Z."**™* and the known regions
in Z;. To tackle this, we apply Poisson blending [41] on
"™ with Z; along the mask borders to enhance color
consistency (Fig. 4a).

To unproject the inpainted image at novel view 7;, the
depth DJ"P*"* is estimated again by [56]. Since the in-
consistency between the new depth DI"P*™ and the known
regions of existing depth D, creates misalignment in 3D
space (Fig. 4b), we follow SceneScape [13] and align the
depths by fine-tuning the last layer of the depth estimation
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Figure 4. Handling appearance and geometry inconsistencies
in 3D point cloud. (a) The inpainting model [46] may introduce
color shifts caused by VAE, creating inconsistencies with the ex-
isting scene (zoomed-in). We mitigate these boundary seams us-
ing Poisson blending [41]. (b) After merging the inpainted region
with the existing point cloud, the newly estimated depth may be
inconsistent with the existing geometry (left). To address this, we
fine-tune the depth estimation model following SceneScape [13]
to align the new depth with the known view depth. These steps
ensure appearance and geometry consistency in each iteration of
3D point cloud generation.
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model [56] and minimizing the disparity between the two
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where © is the element-wise multiplication. We then use the
aligned depth D;™P*™ to lift the inpainted region (1 — M;)
of image Z."**™ into 3D to form P"P*™ and merge it
with the existing one P;_; into P; = P;_1 U P;npaim. By
iterating this process, an expanded 3D static point cloud P
is used for view exploration.

4.2. Multi-video animation

In Stage 2, we utilize the image-to-video generator [3] to
generate ambient motion using the static 3D scene P from
Sec. 4.2. To bake the motion into a 4D scene representa-
tion for view exploration, controlling the camera motions
of the generated videos is essential for the 4D scene op-
timization in Stage 3 (Sec. 4.3). Therefore, instead of a
single-image condition in the original SVD, we condition
the video generation process with a static-scene video ren-
dered by a preset camera trajectory from the point cloud
P. Since a single video cannot encompass the entire
3D scene, we acquire a set of videos {V5t2H}K | (0 en-
sure complete view coverage by rendering K videos with
camera trajectories {r3'art, .. w4} | where each video
pytatic — (start | Tend} captures a part of the scene. We
omit k£ here for simplicity. In practice, we take the view-
extrapolation paths from Stage 1 since the extrapolation
paths for 3D scene generation will cover the entire scene.
For each path, we interpolate between the known view m;_1

and the novel view 7; to form a camera trajectory of length
T, where T is the temporal resolution of the SVD model.
This static-scene extrapolation video serves as the condi-
tion of the video generation (Fig. 5a) to obtain the ambient
scene motion while retaining its camera trajectory.

However, the original SVD cannot control camera mo-
tion in the generated videos (Fig. 5b). Although some meth-
ods [17, 52] extend the pretrained video diffusion models by
inserting additional motion conditioning modules, the gen-
erated videos may still not follow the camera condition [52]
or contain insufficient ambient scene motion [17]. Alterna-
tively, Time-Reversal [12] builds upon SVD with two end-
view image conditions, Z5''t, 7¢d  to allow better control
over camera motion and scene motion for video looping and
view interpolation (Sec. 3.2). However, the two end-view
conditions do not guarantee the camera motion in the mid-
dle frames, so it may still deviate from the specified trajec-
tory (Fig. 5c¢).

To improve camera control, we follow SDEdit [37] and
generate the ambient motion conditioned on the static-scene
rendering Vstatic = [gstart | 7end} - Concretely, we en-
code the static-scene video into the latent z5***¢ and then
add noise to a diffusion step 7, in the diffusion noise
schedule as a perturbed latent zittftic. Therefore, the de-
noising process of Time-Reversal is performed on the per-
turbed z5'4¢ from the step 7, to get a clean video latent

z3¥" with dynamic motion. The VAE-decoded RGB video
Y& = (7, ... Tr} then could have scene motion at the
temporal resolution 7" and better camera motion consistency
with the specified trajectory (Fig. 5d).

Nonetheless, we found that Time-Reversal still yields
low visual quality due to the noise-averaging steps. To re-
store visual quality, we apply a second round of SDEdit to
the initial animated video from the denoising step Tiefine
with SVD only. Although the details can be enhanced,
the appearance and camera motion in the later frames
may slightly deviate from the specified static-rendering
video without the end-view condition from Time Rever-
sal (Fig. 5e). To address this, we adopt FILM [44], to re-
place the last n frames of the video, {Zr_, 1, ..., Zr }, with
{ZFM . ZEEM e}, creating a smooth transition to
the conditioned end-view Z°™, where {ZF'-M 37~ 1 is the
frame interpolation output with two fixed view ZF!"M and
7¢7d, Consequently, we can obtain a set of animated videos,
{ngn}le, with specified camera trajectories and desired
scene motion.

4.3. 4D-scene training

With the expanded 3D point cloud P and multiple animated
videos {V¥™}I_ | covering the 3D scene, we now fit the
4D scene. The canonical 3DGS is initialized by the point
cloud P. For each video ngn, we assign timestamps ¢ =
{1,2,...,T} for the T frames.
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Figure 5. Motion generation with controllable camera trajectory. We aim to animate ambient scene dynamics while maintaining
control over the camera trajectory. (a) We render a static scene video using the 3D point cloud with a smooth camera motion, serving
as a condition for the animated videos. (b) Naively applying SVD with only the start view results in uncontrollable camera poses. (c)
Time-Reversal ensures start and end view consistency but suffers from blurriness and camera trajectory deviations. (d) Using the static
scene video as a condition for SVD with Time-Reversal and SDEdit [37] encourages following the desired trajectory but yields low-quality
results. (e) Applying SDEdit again with only the start view improves quality but causes camera pose deviations. (f) We correct this by
applying a smooth transition to the last frames using FILM [44] to match the end view. Our approach generates animated videos with

ambient dynamics while respecting the specified camera trajectory.

The 4DGS optimization is sensitive to the quality of
training data. In contrast to the original 4DGS [54] trained
on single or multiple synchronized videos, the multi-view
videos, in our case, contain significant inconsistencies in
appearance and motion by separate passes of video gener-
ations. The inconsistencies could harm the optimization of
4DGS, leading to noticeable blurriness and floaters. To ad-
dress this, we introduce per-video motion embeddings and
visibility masks to the training in both implicit and explicit
approaches to handle the multi-video inconsistencies.

Inspired by NeRF-W [36] for handling inconsistent sam-
ples in an embedding space, we employ a per-video motion
embedding, w; | € R", instead of per-image embed-
ding, to ensure consistent motion within each video while
managing inconsistencies across videos. Specifically, given
a 3D position . = (z,y, z) for each Gaussian splat (GS)
and the query time ¢, the deformation module first ob-
tains the spatiotemporal feature, H(z,y, z,t), using a Hex-
plane encoder H (as detailed in Sec. 3.3). We concate-
nate this feature with the motion embedding w;, and feed
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Figure 6. Mitigating inconsistencies among multiple training

videos. Training a 4D scene with independently animated videos
inevitably leads to low-quality renderings. We introduce a per-
video motion embedding into the deformation module to handle
the inconsistency in the embedding space. The motion embedding
results in a significant improvement in the quality (e.g. the fluid
motion). Moreover, we apply visibility masks to the videos, en-
suring that only one video observes each scene part, thereby miti-
gating the blurriness caused by multi-video inconsistencies.

into MLP decoder © to obtain video-dependent deforma-
tion terms for training: {Azy, Ay, Azg, Arg, As,} =
O(H(z,y, z,t) ®wy,), where @ denotes concatenation. Af-
ter training, all embeddings are averaged into a global mo-
tion embedding to render global consistent motion. To reg-
ularize the embeddings, we constrain the embedding norm
in a 1-norm space [11]. In practice, we set the embedding
dimension W = 16.

Implicitly handling inconsistencies in the motion embed-
ding space may still be insufficient, so we further apply
an explicit visibility mask {Mj}£ | to each video. Con-
cretely, the visibility masks ensure that each part of the
scene is observed by only one video (as shown in Fig. 3).
We jointly consider camera poses and the 3D static point
cloud to determine the visibility masks. The length of a
viewing ray, ||v ||, can be obtained by the depth of the 3D
point cloud. The view-angle score \'f’i of the viewing ray
vf; w.r.t to the camera-looking direction, , is computed
by vi . lff/||v{€|| ||l§€|| The overall viewing length ||vi|| and
view-angle score v, of a video Vy is the average over all the
frames.

We then use the two metrics to find the best video that
views the scene part with close and forward-facing views:
k* = arg maxy m + BV, where 8(= 1) is a scalar to
balance the two terms. The visibility masks for all videos
are then acquired by the £* for each scene part. The hard
selection ensures each part is only trained by one video to
avoid blurriness, but we also expand the visibility mask by
a small width with a soft decreasing weight to encourage a
smooth spatial transition among the training videos. Note
that the visibility masking may result in separate motions
because different videos train different areas. While we fo-
cus on generating a scene with ambient motion, the sepa-
rate motion may be negligible. Then, the visibility masks
are used as weighting maps to compute the RGB and depth
loss during training: Lygp = > ||fk — Tkll1 ® My, and

Laepth = Y |2~D;1 — D,;1|1 ® My, where the depth loss is
slightly different from Eq. 2. Here, we apply more penalty
to near scenes and more tolerance to the error in far scenes
since the point cloud depth alignment may still exist mis-
alignment in the far scenes. Notably, the 4D scene depth
is trained by the depth of the 3D static point cloud. It may
not be suitable when the scene contains outstanding moving
objects, such as humans and animals. Since we are generat-
ing a 4D scene with ambient motions, we found it sufficient
to supervise learning 3D scene structure. During 4DGS fit-
ting, to prevent quality degradation from training with the
VAE-decoded videos via SVD, we also use the point-cloud-
rendered images in higher quality to supervise the canoni-
cal 3DGS model. We adopt the rigidity loss [32] Lyigidity
to encourage neighboring Gaussian splats to have a simi-
lar deformation for propagating the high-quality canonical
appearance to 4D rendering. The total is then computed
by L = Ergb + )\depth‘cdepth + )\rigidity‘crigidityy where
Adepth and Asigidity balance the loss terms. Finally, the 4D
scene optimization learns the motion from multi-video with
proper handling of multi-video inconsistencies, which re-
sults in a 4D explorable scene with ambient motion and
sharp details (Fig. 6).

5. Experimental Results

Implementation details. In Stage 1, for 3D scene gen-
eration, we typically expand the scene ten times, taking
about 15 minutes. In Stage 2, for multi-video generation,
we create 10 extrapolation videos (X = 10). The animation
process, including quality refinement and end-frame correc-
tion, takes roughly 7 minutes per video with 7, = 16 for
Time-Reversal and Tyefine = 9 for SVD refinement. We re-
implement Time-Reversal [12] by ourselves. In Stage 3, the
canonical 3DGS is trained for 3,000 iterations with a max-
imum spherical harmonics order of 3. Then, the 4DGS is
further trained for 15,000 iterations, with Agepen = 1 and
Arigidity = 1, taking around 1.5 hours. Overall, the 4D
scene generation process takes about 3.5 hours. Notably,
the baseline method, which involves reconstructing a single
SVD video using depth and pose estimation[61] and then
training with 4DGS, requires more than 4 hours.

5.1. Qualitative results

As 4D scene generation is a new problem without an ex-
isting benchmark, we showcase a free-view exploration of
the generated 4D scenes. In Fig. 7, our method expands the
real input image into a larger scene with ambient motions.
In Fig. 8, we demonstrate diverse text-guided 4D scene gen-
eration scenarios with various scene ambient motion. Fur-
thermore, our method can also turn a 360 panorama image
into a 4D immersive scene (Fig. 9), which can be further
applied to VR applications.
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Figure 7. Qualitative results of real photo inputs. Our method turns a real static image into an alive 4D scene with ambient scene

motions.

5.2. Human perceptual evaluation

The primary application of our work is for creative and en-
tertainment purposes. It’s difficult to evaluate such gen-
erated results with standard reference-based metrics. We
thus employ human perceptual evaluation on the generated
4D-scene videos, focusing on detail quality, visual appeal,
and view explorability. We compare our method against
a baseline and conduct an ablation study on each compo-
nent. Participants answered binary choice questions like
“Which video has better overall visual appeal?”” and we col-
lected feedback from 32 users. As shown in Table 1, our
method surpasses the baseline in visual appeal and view
explorability. Our lower preference ratio for detail quality
is due to inconsistencies from multi-video training, while
baseline is trained with single-video which captures more
consistent details yet with limited viewpoints. For the ab-
lation study, we compare against our ablated methods with-

Table 1. Human perceptual user study for comparison with base-
line and ablation study on details, visual appeal, and explorability.

| Detail. ~ Appeal.
| 61.5% 823%  91.7%

Questions. Explore.

Ours over baseline.

Ours over w/o SDEdit quality refine. | 88.2%  80.6% -
Ours over w/o motion embed. 59.8%  65.9% -
Ours over w/o mask. 50.5%  52.2% -

out SDEdit quality refinement in the video generation stage,
per-video motion embedding, and visibility masking in the
training stage to handle the multi-video inconsistencies.
The results indicate a general preference for our full method
over the ablated versions. The improvement from visibility
masking was less significant, likely because detail improve-
ments were not easily noticeable in videos with rapid view
changes. However, quality improvements are evident in the
image comparison shown in Fig. 6.
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Figure 8. Qualitative results of text inputs. Our method can generate diverse ambient scene motion in various text-guided generated
scenarios.
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Figure 9. Generating immersive 4D scene from 360 panorama image. Our method can also take a 360 panorama image to generate an
explorable 4D scene with ambient motion.
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Figure 10. Limitations. Our method relies on a series of successes in 3D scene generation and video generation. (a) In 3D scene generation,
imperfect depth estimation/reprojection often occurs in thin structures, leading to noisy results. (b) In video generation, the quality may
degrade through the encoding and decoding process of SVD VAE, causing a blurry 4D scene. (c¢) The scene motion generation is difficult
to control. SVD often fails to generate plausible motion for paintings and text-conditioned generated images. We expect more advanced
video generation models may achieve better quality and controllability, but most of these are not available to the public.

6. Limitation and Discussion

We acknowledge that the quality of our method is far
from perfect. Our method is complex and time-consuming
with multiple stages, and relies on a series of successful
processes to generate a 4D scene with plausible ambient
motion. In the 3D scene generation stage, inaccurate depth
estimation can be revealed in a distant novel view with a
large viewpoint change, restricting the 3D scene expansion.
In addition, the depth estimation model often fails to esti-
mate thin structures, leading to distorted results in the novel
view (Fig. 10a). Furthermore, the noisy reprojection will
also lead to undesirable video generation in Stage 2. In the
multi-video generation stage, SVD significantly degrades
the input image quality (Fig. 10b), causing a blurry 4D
scene reconstruction in Stage 3. Besides, SVD still lacks
scene motion control and often fails in non-real image
cases, such as paintings, and diffusion-generated images
(Fig. 10c). As mentioned by Time-Reversal [12], the SVD
only takes a few motion scalars as animation conditions,
which are ambiguous and often require careful tuning
on the new input. Despite these major limitations, our
method is the first to enable the generation of explorable
4D scenes with ambient motions. When applied to a more
reliable video generator in the future, we believe that our
proposed pipeline can significantly enhance 4D scene
generation, leading to improved quality and robustness.
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